/* * The MIT License (MIT) * * Copyright (c) 2018, hathach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "bsp/board.h" #include "fsl_device_registers.h" #include "fsl_gpio.h" #include "fsl_lpuart.h" #include "board.h" #include "pin_mux.h" #include "clock_config.h" #ifdef BOARD_TUD_RHPORT #define PORT_SUPPORT_DEVICE(_n) (BOARD_TUD_RHPORT == _n) #else #define PORT_SUPPORT_DEVICE(_n) 0 #endif #ifdef BOARD_TUH_RHPORT #define PORT_SUPPORT_HOST(_n) (BOARD_TUH_RHPORT == _n) #else #define PORT_SUPPORT_HOST(_n) 0 #endif //--------------------------------------------------------------------+ // MACRO TYPEDEF CONSTANT ENUM //--------------------------------------------------------------------+ //--------------------------------------------------------------------+ // Forward USB interrupt events to TinyUSB IRQ Handler //--------------------------------------------------------------------+ void USB0_FS_IRQHandler(void) { tud_int_handler(0); } void USB1_HS_IRQHandler(void) { tud_int_handler(1); } void board_init(void) { BOARD_InitPins(); BOARD_InitBootClocks(); CLOCK_SetupExtClocking(XTAL0_CLK_HZ); // 1ms tick timer SysTick_Config(SystemCoreClock / 1000); #if CFG_TUSB_OS == OPT_OS_FREERTOS // If freeRTOS is used, IRQ priority is limit by max syscall ( smaller is higher ) NVIC_SetPriority(USB1_HS_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY ); #endif // LED CLOCK_EnableClock(LED_CLK); gpio_pin_config_t led_config = { kGPIO_DigitalOutput, 0, }; GPIO_PinInit(LED_GPIO,LED_PIN, &led_config); board_led_write(0); #ifdef NEOPIXEL_PIN // Neopixel static uint32_t pixelData[NEOPIXEL_NUMBER]; IOCON_PinMuxSet(IOCON, NEOPIXEL_PORT, NEOPIXEL_PIN, IOCON_PIO_DIG_FUNC4_EN); sctpix_init(NEOPIXEL_TYPE); sctpix_addCh(NEOPIXEL_CH, pixelData, NEOPIXEL_NUMBER); sctpix_setPixel(NEOPIXEL_CH, 0, 0x100010); sctpix_setPixel(NEOPIXEL_CH, 1, 0x100010); sctpix_show(); #endif // Button #ifdef BUTTON_GPIO CLOCK_EnableClock(BUTTON_CLK); gpio_pin_config_t const button_config = { kGPIO_DigitalInput, 0}; GPIO_PinInit(BUTTON_GPIO, BUTTON_PIN, &button_config); #endif #ifdef UART_DEV // UART // IOCON_PinMuxSet(IOCON, UART_RX_PINMUX); // IOCON_PinMuxSet(IOCON, UART_TX_PINMUX); // Enable UART when debug log is on board_uart_init_clock(); lpuart_config_t uart_config; LPUART_GetDefaultConfig(&uart_config); uart_config.baudRate_Bps = CFG_BOARD_UART_BAUDRATE; uart_config.enableTx = true; uart_config.enableRx = true; LPUART_Init(UART_DEV, &uart_config, 12000000u); #endif // USB VBUS /* PORT0 PIN22 configured as USB0_VBUS */ #if PORT_SUPPORT_DEVICE(0) // Port0 is Full Speed CLOCK_AttachClk(kCLK_48M_to_USB0); CLOCK_EnableClock(kCLOCK_Usb0Ram); CLOCK_EnableClock(kCLOCK_Usb0Fs); CLOCK_EnableUsbfsClock(); #endif #if PORT_SUPPORT_DEVICE(1) // Port1 is High Speed // Power SPC0->ACTIVE_VDELAY = 0x0500; /* Change the power DCDC to 1.8v (By default, DCDC is 1.8V), CORELDO to 1.1v (By default, CORELDO is 1.0V) */ SPC0->ACTIVE_CFG &= ~SPC_ACTIVE_CFG_CORELDO_VDD_DS_MASK; SPC0->ACTIVE_CFG |= SPC_ACTIVE_CFG_DCDC_VDD_LVL(0x3) | SPC_ACTIVE_CFG_CORELDO_VDD_LVL(0x3) | SPC_ACTIVE_CFG_SYSLDO_VDD_DS_MASK | SPC_ACTIVE_CFG_DCDC_VDD_DS(0x2u); /* Wait until it is done */ while (SPC0->SC & SPC_SC_BUSY_MASK) {} if (0u == (SCG0->LDOCSR & SCG_LDOCSR_LDOEN_MASK)) { SCG0->TRIM_LOCK = 0x5a5a0001U; SCG0->LDOCSR |= SCG_LDOCSR_LDOEN_MASK; /* wait LDO ready */ while (0U == (SCG0->LDOCSR & SCG_LDOCSR_VOUT_OK_MASK)); } SYSCON->AHBCLKCTRLSET[2] |= SYSCON_AHBCLKCTRL2_USB_HS_MASK | SYSCON_AHBCLKCTRL2_USB_HS_PHY_MASK; SCG0->SOSCCFG &= ~(SCG_SOSCCFG_RANGE_MASK | SCG_SOSCCFG_EREFS_MASK); /* xtal = 20 ~ 30MHz */ SCG0->SOSCCFG = (1U << SCG_SOSCCFG_RANGE_SHIFT) | (1U << SCG_SOSCCFG_EREFS_SHIFT); SCG0->SOSCCSR |= SCG_SOSCCSR_SOSCEN_MASK; while (1) { if (SCG0->SOSCCSR & SCG_SOSCCSR_SOSCVLD_MASK) { break; } } // Clock SYSCON->CLOCK_CTRL |= SYSCON_CLOCK_CTRL_CLKIN_ENA_MASK | SYSCON_CLOCK_CTRL_CLKIN_ENA_FM_USBH_LPT_MASK; CLOCK_EnableClock(kCLOCK_UsbHs); CLOCK_EnableClock(kCLOCK_UsbHsPhy); CLOCK_EnableUsbhsPhyPllClock(kCLOCK_Usbphy480M, 24000000U); CLOCK_EnableUsbhsClock(); // USB PHY #if ((!(defined FSL_FEATURE_SOC_CCM_ANALOG_COUNT)) && (!(defined FSL_FEATURE_SOC_ANATOP_COUNT))) USBPHY->TRIM_OVERRIDE_EN = 0x001fU; /* override IFR value */ #endif // Enable PHY support for Low speed device + LS via FS Hub USBPHY->CTRL |= USBPHY_CTRL_SET_ENUTMILEVEL2_MASK | USBPHY_CTRL_SET_ENUTMILEVEL3_MASK; // Enable all power for normal operation USBPHY->PWD = 0; // TX Timing uint32_t phytx = USBPHY->TX; phytx &= ~(USBPHY_TX_D_CAL_MASK | USBPHY_TX_TXCAL45DM_MASK | USBPHY_TX_TXCAL45DP_MASK); phytx |= USBPHY_TX_D_CAL(0x04) | USBPHY_TX_TXCAL45DP(0x07) | USBPHY_TX_TXCAL45DM(0x07); //phytx |= USBPHY_TX_D_CAL(0x0C) | USBPHY_TX_TXCAL45DP(0x06) | USBPHY_TX_TXCAL45DM(0x06); USBPHY->TX = phytx; #endif } //--------------------------------------------------------------------+ // Board porting API //--------------------------------------------------------------------+ void board_led_write(bool state) { GPIO_PinWrite(LED_GPIO, LED_PIN, state ? LED_STATE_ON : (1-LED_STATE_ON)); #ifdef NEOPIXEL_PIN if (state) { sctpix_setPixel(NEOPIXEL_CH, 0, 0x100000); sctpix_setPixel(NEOPIXEL_CH, 1, 0x101010); } else { sctpix_setPixel(NEOPIXEL_CH, 0, 0x001000); sctpix_setPixel(NEOPIXEL_CH, 1, 0x000010); } sctpix_show(); #endif } uint32_t board_button_read(void) { #ifdef BUTTON_GPIO return BUTTON_STATE_ACTIVE == GPIO_PinRead(BUTTON_GPIO, BUTTON_PIN); #endif } int board_uart_read(uint8_t* buf, int len) { (void) buf; (void) len; return 0; } int board_uart_write(void const * buf, int len) { #ifdef UART_DEV LPUART_WriteBlocking(UART_DEV, (uint8_t const *) buf, len); return len; #else (void) buf; (void) len; return 0; #endif } #if CFG_TUSB_OS == OPT_OS_NONE volatile uint32_t system_ticks = 0; void SysTick_Handler(void) { system_ticks++; } uint32_t board_millis(void) { return system_ticks; } #endif