CLSH1001-Firmware/managed_components/espressif__tinyusb/hw/bsp/msp430/family.c
2024-03-05 16:09:49 -06:00

219 lines
6.1 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "bsp/board.h"
#include "board.h"
#include "msp430.h"
//--------------------------------------------------------------------+
// Forward USB interrupt events to TinyUSB IRQ Handler
//--------------------------------------------------------------------+
void __attribute__ ((interrupt(USB_UBM_VECTOR))) USB_UBM_ISR(void)
{
tud_int_handler(0);
}
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM
//--------------------------------------------------------------------+
uint32_t cnt = 0;
static void SystemClock_Config(void)
{
WDTCTL = WDTPW + WDTHOLD; // Disable watchdog.
// Increase VCore to level 2- required for 16 MHz operation on this MCU.
PMMCTL0 = PMMPW + PMMCOREV_2;
UCSCTL3 = SELREF__XT2CLK; // FLL is fed by XT2.
// XT1 used for ACLK (default- not used in this demo)
P5SEL |= BIT4; // Required to enable XT1
// Loop until XT1 fault flag is cleared.
do
{
UCSCTL7 &= ~XT1LFOFFG;
}while(UCSCTL7 & XT1LFOFFG);
// XT2 is 4 MHz an external oscillator, use PLL to boost to 16 MHz.
P5SEL |= BIT2; // Required to enable XT2.
// Loop until XT2 fault flag is cleared
do
{
UCSCTL7 &= ~XT2OFFG;
}while(UCSCTL7 & XT2OFFG);
// Kickstart the DCO into the correct frequency range, otherwise a
// fault will occur.
// FIXME: DCORSEL_6 should work according to datasheet params, but generates
// a fault. I am not sure why it faults.
UCSCTL1 = DCORSEL_7;
UCSCTL2 = FLLD_2 + 3; // DCO freq = D * (N + 1) * (FLLREFCLK / n)
// DCOCLKDIV freq = (N + 1) * (FLLREFCLK / n)
// N = 3, D = 2, thus DCO freq = 32 MHz.
// MCLK configured for 16 MHz using XT2.
// SMCLK configured for 8 MHz using XT2.
UCSCTL4 |= SELM__DCOCLKDIV + SELS__DCOCLKDIV;
UCSCTL5 |= DIVM__16 + DIVS__2;
// Now wait till everything's stabilized.
do
{
UCSCTL7 &= ~(XT2OFFG + XT1LFOFFG + DCOFFG);
SFRIFG1 &= ~OFIFG;
}while(SFRIFG1 & OFIFG);
// Configure Timer A to use SMCLK as a source. Count 1000 ticks at 1 MHz.
TA0CCTL0 |= CCIE;
TA0CCR0 = 999; // 1000 ticks.
TA0CTL |= TASSEL_2 + ID_3 + MC__UP; // Use SMCLK, divide by 8, start timer.
// Initialize USB power and PLL.
USBKEYPID = USBKEY;
// VUSB enabled automatically.
// Wait two milliseconds to stabilize, per manual recommendation.
uint32_t ms_elapsed = board_millis();
do
{
while((board_millis() - ms_elapsed) < 2);
}while(!(USBPWRCTL & USBBGVBV));
// USB uses XT2 (4 MHz) directly. Enable the PLL.
USBPLLDIVB |= USBPLL_SETCLK_4_0;
USBPLLCTL |= (UPFDEN | UPLLEN);
// Wait until PLL locks. Check every 2ms, per manual.
ms_elapsed = board_millis();
do
{
USBPLLIR &= ~USBOOLIFG;
while((board_millis() - ms_elapsed) < 2);
}while(USBPLLIR & USBOOLIFG);
USBKEYPID = 0;
}
uint32_t wait = 0;
void board_init(void)
{
__bis_SR_register(GIE); // Enable interrupts.
SystemClock_Config();
// Enable basic I/O.
P1DIR |= LED_PIN; // LED output.
P1REN |= BUTTON_PIN; // Internal resistor enable.
P1OUT |= BUTTON_PIN; // Pullup.
// Enable the backchannel UART (115200)
P4DIR |= BIT5;
P4SEL |= (BIT5 | BIT4);
UCA1CTL1 |= (UCSSEL__SMCLK | UCSWRST); // Hold in reset, use SMCLK.
UCA1BRW = 4;
UCA1MCTL |= (UCBRF_3 | UCBRS_5 | UCOS16); // Overampling mode, 115200 baud.
// Copied from manual.
UCA1CTL1 &= ~UCSWRST;
// Set up USB pins.
USBKEYPID = USBKEY;
USBPHYCTL |= PUSEL; // Convert USB D+/D- pins to USB functionality.
USBKEYPID = 0;
}
//--------------------------------------------------------------------+
// Board porting API
//--------------------------------------------------------------------+
void board_led_write(bool state)
{
if(state)
{
LED_PORT |= LED_PIN;
}
else
{
LED_PORT &= ~LED_PIN;
}
}
uint32_t board_button_read(void)
{
return ((P1IN & BIT1) >> 1) == BUTTON_STATE_ACTIVE;
}
int board_uart_read(uint8_t * buf, int len)
{
for(int i = 0; i < len; i++)
{
// Wait until something to receive (cleared by reading buffer).
while(!(UCA1IFG & UCRXIFG));
buf[i] = UCA1RXBUF;
}
return len;
}
int board_uart_write(void const * buf, int len)
{
const char * char_buf = (const char *) buf;
for(int i = 0; i < len; i++)
{
// Wait until TX buffer is empty (cleared by writing buffer).
while(!(UCA1IFG & UCTXIFG));
UCA1TXBUF = char_buf[i];
}
return len;
}
#if CFG_TUSB_OS == OPT_OS_NONE
volatile uint32_t system_ticks = 0;
void __attribute__ ((interrupt(TIMER0_A0_VECTOR))) TIMER0_A0_ISR (void)
{
system_ticks++;
// TAxCCR0 CCIFG resets itself as soon as interrupt is invoked.
}
uint32_t board_millis(void)
{
uint32_t systick_mirror;
// 32-bit update is not atomic on MSP430. We can read the bottom 16-bits,
// an interrupt occurs, updates _all_ 32 bits, and then we return a
// garbage value. And I've seen it happen!
TA0CCTL0 &= ~CCIE;
systick_mirror = system_ticks;
TA0CCTL0 |= CCIE;
return systick_mirror;
}
#endif